Hybridizable interior penalty methods for the class of non-uniform second-order elliptic problems

joint work with G. Etangsale^b and M. Fahs[#]

^b PIMENT, University of Reunion, France,
 [‡] LHyGeS, University of Strasbourg, France.

Pau, December 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Advection-Diffusion-Reaction problems are relevant in (Computational) Geosciences:

$$\nabla \cdot (-\boldsymbol{\kappa} \nabla u + \boldsymbol{\beta} u) + \boldsymbol{\gamma} u = f \quad \text{in} \quad \Omega \subset \mathbb{R}^d, \tag{1}$$

where u denotes the state variable.

A wide range of physical processes and mathematical challenges :

- Pure diffusion problem with $\beta = 0$ (Darcy' or Fick' laws),
- Pure (linear) advection problem with $\kappa = 0$ (Neutron transport),
- Mixed ADR problem w.r.t. $0 < Pe < \infty$ (contaminant transport).

In all these situations, mathematical nature is uniform on the whole domain Ω .

e Here, we focus on non-uniform second-order elliptic problems :

• Non-uniformity = Hyperbolic in a subpart of Ω and Elliptic in the rest

$$egin{array}{ccc} \Omega_1 & \Omega_2 & \Omega_3 \ \kappa_1
eq 0 & \kappa_2 = 0 & \kappa_3
eq 0 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

▶ Heat and Mass transfer in fractured porous media

Toy model problem (1D) :

Consider $(-\kappa u'_{\epsilon} + u_{\epsilon})' = 0$ in]0,1[with Dirichlet B.C. $u_{\epsilon}(0) = 1$ and $u_{\epsilon}(1) = 0$:

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We represent the analytical solution $u_{\epsilon}(x)$ with $\lim \epsilon \to 0$.

Example 1D : Analytical solution $u_{\epsilon}(x)$ with $\epsilon = \{1, 0.1, 0.01, \dots, 0\}$.

◆ロ > ◆母 > ◆母 > ◆母 > → 母 = ∽ へ ⊙ >

Example 1D : Analytical solution $u_{\epsilon}(x)$ with $\epsilon = \{1, 0.1, 0.01, \dots, 0\}$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ● の Q ()・

Main goal : an unified Hybridizable DG method for solving large class of problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- ▶ The continuous problem (sense of Fichera)
- ► Hybridizable IP approximations
- ► Numerical experiments

Following Fichera (1956):

The Dirichlet boundary value problem reads:

$$\nabla \cdot (-\kappa \nabla u + \beta u) + \mu u = f \quad \text{in} \quad \Omega \setminus \mathcal{I}_{\kappa},$$

$$\begin{bmatrix} -\kappa \nabla u + \beta u \end{bmatrix} = 0 \quad \text{on} \quad \mathcal{I}_{\kappa},$$

$$\begin{bmatrix} u \end{bmatrix} = 0 \quad \text{on} \quad \mathcal{I}_{\kappa,\beta}^+,$$

$$u = g \quad \text{on} \quad \Gamma_{\kappa,\beta}^-,$$
(2)

where $\llbracket \cdot \rrbracket$ denotes the normal jump operator and,

 $\blacktriangleright \ \mathcal{I}_{\kappa} := \{ x \in \Omega \ : \ \partial \Omega_{\kappa}^{\mathrm{hyp}} \cap \partial \Omega_{\kappa}^{\mathrm{ell}} \} \text{ and } \mathcal{I}_{\kappa, \beta}^{\pm} := \{ x \in \mathcal{I}_{\kappa} \ : \ \pm \beta(x) \cdot \boldsymbol{n}_{l} > 0 \}$

 \triangleright $\Gamma_{\kappa,\beta}^{-}$ corresponds to the non-degenerative inflow boundary :

$$\Gamma^{-}_{\boldsymbol{\kappa},\boldsymbol{\beta}} := \{ x \in \partial \Omega : \boldsymbol{n}^{t} \boldsymbol{\kappa}(x) \boldsymbol{n} > 0 \quad \text{or} \quad \boldsymbol{\beta} \cdot \boldsymbol{n} < 0 \},$$

and **n** denotes the unit outward normal to $\partial \Omega$.

Hybridizable Interior Penalty method

HIP method = Nonconforming method

Term *nonconforming* = no-regularity assumptions on discrete variables.

▶ The scalar variable *u* is approximated locally by

- ▶ Interior variable u_h defined in each element A of \mathcal{T}_h : $u_h \in \mathbb{P}_k(A)$
- ▶ Trace variable \hat{u}_h defined on each face *F* of the mesh skeleton: $\hat{u}_h \in \mathbb{P}_k(F)$

Intuitive derivation

▶ Weak formulation on $A \in \mathcal{T}_h$ (Local problem)

$$-(\boldsymbol{\sigma}_{h}, \boldsymbol{\nabla} \boldsymbol{v}_{h})_{A} + \langle \hat{\boldsymbol{\sigma}}_{h}(\boldsymbol{u}_{h}, \hat{\boldsymbol{u}}_{h}) \cdot \boldsymbol{n}, \boldsymbol{v}_{h} \rangle_{\partial A} + (\mu \boldsymbol{u}_{h}, \boldsymbol{v}_{h})_{A} = (f, \boldsymbol{v}_{h})_{A}$$
(3)

▶ By summing-up overall element $A \in T_h$ (Global problem)

$$-(\boldsymbol{\sigma}_{h},\boldsymbol{\nabla}\boldsymbol{v}_{h})_{\Omega}+(\mu\boldsymbol{u}_{h},\boldsymbol{v}_{h})_{\Omega}+\sum_{\boldsymbol{A}\in\mathcal{T}_{h}}\langle\hat{\boldsymbol{\sigma}}_{h}(\boldsymbol{u}_{h},\hat{\boldsymbol{u}}_{h})\cdot\boldsymbol{n},\boldsymbol{v}_{h}\rangle_{\partial\boldsymbol{A}}=(f,\boldsymbol{v}_{h})_{\Omega} \qquad (4)$$

Continuity of the normal flux (Closure equation)

$$\sum_{A \in \mathcal{T}_h} \langle \hat{\boldsymbol{\sigma}}_h(\boldsymbol{u}_h, \hat{\boldsymbol{u}}_h) \cdot \boldsymbol{n}, \hat{\boldsymbol{v}}_h \rangle_{\partial A} = 0$$
(5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

By combining these equations

$$-(\boldsymbol{\sigma}_{h}, \boldsymbol{\nabla} \boldsymbol{v}_{h})_{\Omega} + (\mu \boldsymbol{u}_{h}, \boldsymbol{v}_{h})_{\Omega} + \sum_{A \in \mathcal{T}_{h}} \langle \hat{\boldsymbol{\sigma}}_{h}(\boldsymbol{u}_{h}, \hat{\boldsymbol{u}}_{h}) \cdot \boldsymbol{n}, \boldsymbol{v}_{h} - \hat{\boldsymbol{v}}_{h} \rangle_{\partial A} = (f, \boldsymbol{v}_{h})_{\Omega} \quad (6)$$

Numerical fluxes of HDG

Following Cockburn (2009) : $\hat{\boldsymbol{\sigma}}_h \cdot \boldsymbol{n} = \boldsymbol{\sigma}_h \cdot \boldsymbol{n} + \tau (u_h - \hat{u}_h)$

The role of τ :

- Ensure that local and global solvers are well-posed,
- ▶ Transform the discrepancy $(u_h \hat{u}_h)$ on ∂A into a *positive energy*,
- ► Enhance the stability of the HDG method.

Mathematical expressions

► For
$$e \in \mathcal{F}_h^i$$
:
 $\hat{u}_h = \{u_h\}_{\omega} + \alpha_e[\![\sigma_h]\!]$ and $\hat{\sigma}_h = \{\sigma_h\}_{\overline{\omega}} + \gamma_e[\![u_h]\!]$ (7)
where $\alpha_e(\tau)$, $\gamma_e(\tau)$, $\omega(\tau)$ et $\{\cdot\}_{\omega}$, $\{\cdot\}_{\overline{\omega}}$: traces operators.
► For $e \in \mathcal{F}_h^b$:
 $\hat{u}_h = g$, and $\hat{\sigma}_h \cdot \boldsymbol{n}_e = \sigma_h \cdot \boldsymbol{n}_e + \gamma_e(u_h - g)$. (8)

◆□ ▶ ◆圖 ▶ ◆ 国 ▶ ◆ 国 ▶ ●

э.

How to choose Stabilization Parameter τ_e

• Pure diffusive regime $(\beta = 0)$:

$$\tau_e^d := \frac{\alpha_0(k+1)(k+d)\kappa_e}{|e|} \quad \text{where} \quad \kappa_e = \mathbf{n}_e \cdot \mathbf{\kappa} \cdot \mathbf{n}_e$$

Here κ_e is the normal diffusivity at the interface *e*.

Pure advective regime (
$$\kappa = 0$$
) :

$$\tau_e^{\mathrm{up}} := \max(0, -\beta_e) \quad \text{where} \quad \beta_e = \boldsymbol{\beta} \cdot \boldsymbol{n}_e.$$

Here $\tau_e^{\rm up}$ characterized the traditional <code>upwind-strategy</code>

Intermediate regime :

$$\tau_e = \tau_e^d + \tau_e^{\rm up}.$$

Discrete weak problem

Compact HIP formulation:

Find $(u_h, \hat{u}_h) \in V_h imes \hat{V}_h^g$ such that

$$a_h^{(\epsilon)}(u_h, \hat{u}_h; v_h, \hat{v}_h) = I(v_h) \qquad orall (v_h, \hat{v}_h) \in V_h imes \hat{V}_h^0$$

where $\epsilon \in \{0, \pm 1\}$ and the bilinear form $a_h^{(\epsilon)}$ is given by

$$\begin{aligned} \mathsf{a}_{h}^{(\epsilon)}(u_{h},\hat{u}_{h};\mathbf{v}_{h},\hat{v}_{h}) &:= & (\boldsymbol{\kappa} \nabla u_{h}, \nabla v_{h})_{\Omega} - (\beta u_{h}, \nabla v_{h})_{\Omega} + (\mu u_{h},v_{h})_{\Omega} \\ & - \sum_{A \in \mathcal{T}_{h}} \langle \boldsymbol{\kappa} \nabla u_{h} \cdot \boldsymbol{n} - \beta \cdot \boldsymbol{n} u_{h}, v_{h} - \hat{v}_{h} \rangle_{\partial A} \\ & - \sum_{A \in \mathcal{T}_{h}} \boldsymbol{\epsilon} \langle \boldsymbol{\kappa} \nabla v_{h} \cdot \boldsymbol{n}, u_{h} - \hat{u}_{h} \rangle_{\partial A} \\ & + \sum_{A \in \mathcal{T}_{h}} \langle \boldsymbol{\tau}(u_{h} - \hat{u}_{h}), v_{h} - \hat{v}_{h} \rangle_{\partial A} \\ & + \sum_{F \in \Gamma_{h}^{+}, \sigma} \langle \boldsymbol{\beta} \cdot \boldsymbol{n} \hat{u}_{h}, \hat{v}_{h} \rangle_{F} \end{aligned}$$

• Three HIP variants : H-IIP ($\epsilon = 0$), H-SIP ($\epsilon = +1$), and H-NIP ($\epsilon = -1$)

(ロ) (母) (日) (日) (日) (日)

Static condensation: $a_h^{(\epsilon)}(u_h, \hat{u}_h; v_h, 0)$ and $a_h^{(\epsilon)}(u_h, \hat{u}_h; 0, \hat{v}_h)$

Algebraic matrix equation:

$$\begin{bmatrix} \mathbb{A}_{uu} & \mathbb{A}_{u\hat{u}} \\ \mathbb{A}_{\hat{u}u} & \mathbb{A}_{\hat{u}\hat{u}} \end{bmatrix} \cdot \begin{bmatrix} U_h \\ \hat{U}_h \end{bmatrix} = \begin{bmatrix} F \\ G \end{bmatrix}$$
(9)

• Step 1. Elimination of interior variable u_h :

$$U_h = \mathbb{A}_{uu}^{-1} F - \mathbb{A}_{uu}^{-1} \mathbb{A}_{u\hat{u}} \hat{U}_h$$

• Step 2. Lagrange multipliers system:

$$\mathbb{A}\hat{U}_h = b$$

< ロ > (同 > (回 > (回 >)))

3

• Step 3. Reconstruction of u_h , σ_h and $\hat{\sigma}_h$

The proposed HIP method is implemented via the NGsolve library :

• Pure diffusion problems with low and high regularity solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Pure advection problems
- Mixed ADR problems with high Péclet number
- Degenerate ADR problems

Test 1: Pure diffusive problem (smooth solution)

- $\Omega=\Omega_1\cup\Omega_2\cup\Omega_3\cup\Omega_4=[0,1]^2$,
- Heterogeneous/Anisotropic diffusion tensor κ :

$$\begin{split} \kappa_{1,3}(x,y) &= \begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix} & \text{for } (x,y) \in \Omega_{1,3}, \\ \kappa_{2,4}(x,y) &= \begin{bmatrix} \epsilon & 0 \\ 0 & 1 \end{bmatrix} & \text{for } (x,y) \in \Omega_{2,4}. \end{split}$$

with $\varepsilon \in \{1, 10 \text{ and } 100\}$. • Exact solution in $\Omega : u(x, y) = \sin(\pi x)\sin(\pi y)$

▲ロ▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Test 1: Pure diffusive problem (smooth solution)

Figure: Representation of $u_h \in \mathbb{P}_k(\mathcal{T}_h)$ with k = 1 (left) and k = 5 (right).

Test 1: Pure diffusive problem (smooth solution)

			ε =	= 1			$\epsilon =$	= 10			$\epsilon=100$			
k	h	<i>u</i> − <i>u</i>	$h \parallel_{L_2}$	$ u - u_h _{H^1}$		<i>u</i> − <i>u</i>	$\parallel u - u_h \parallel_{L_2}$		$\ u - u_h \ _{H^1}$		$\parallel u - u_h \parallel_{L_2}$		$ u - u_h _{H^1}$	
ĸ		Error	Rate	Error	Rate	Error	Rate	Error	Rate	Error	Rate	Error	Rate	
	4	4.8e-02	-	8.3e-01	-	4.4e-02	-	8.2e-01	-	4.2e-02	-	8.2e-01	-	
	8	1.2e-02	2.0	4.1e-01	1.0	1.1e-02	2.0	4.1e-01	1.0	1.1e-02	1.9	4.3e-01	0.9	
1	16	2.9e-03	2.0	2.0e-01	1.0	2.7e-03	2.0	2.0e-01	1.0	2.8e-03	2.0	2.1e-01	1.0	
	32	7.3e-04	2.0	1.0e-01	1.0	6.6e-04	2.0	1.1e-01	1.0	6.8e-04	2.0	1.1e-01	1.0	
	64	1.8e-04	2.0	5.0e-02	1.0	1.6e-04	2.0	5.0e-02	1.0	1.6e-04	2.0	5.2e-02	1.0	
	4	4.5e-03	-	1.5e-01	-	4.6e-03	-	1.5e-01	-	4.7e-03	-	1.6e-01	-	
	8	5.8e-04	3.0	3.8e-02	2.0	6.0e-04	2.9	3.8e-02	2.0	6.7e-04	2.8	4.1e-02	2.0	
2	16	7.3e-05	3.0	9.4e-03	2.0	7.6e-05	3.0	9.4e-03	2.0	9.0e-05	2.9	1.0e-02	2.0	
	32	9.2e-06	3.0	2.3e-03	2.0	9.7e-06	3.0	2.3e-03	2.0	1.1e-05	3.0	2.5e-03	2.0	
	64	1.1e-06	3.0	5.8e-04	2.0	1.2e-06	3.0	5.8e-04	2.0	1.4e-06	3.0	6.0e-04	2.0	
	4	4.9e-04	-	1.9e-02	-	5.0e-04	-	2.0e-02	-	5.5e-04	-	2.2e-02	-	
	8	2.9e-05	4.0	2.3e-03	3.0	3.1e-05	4.0	2.4e-03	3.0	3.5e-05	4.0	2.6e-03	3.1	
3	16	1.8e-06	4.0	2.9e-04	3.0	1.8e-06	4.1	2.9e-04	3.0	2.1e-06	4.0	3.1e-04	3.0	
	32	1.1e-07	4.0	3.6e-05	3.0	1.1e-07	4.0	3.6e-05	3.0	1.3e-07	4.0	3.8e-05	3.0	
	64	6.8e-09	4.0	4.5e-06	3.0	6.8e-09	4.0	4.5e-06	3.0	8.0e-09	4.0	4.7e-06	3.0	

Table: History of convergence for the smooth diffusive solution test case.

Test 2: Pure diffusive problem (rough solution)

(Rivière, 2008)

Ω_2, δ_2	Ω_1, δ_1
Ω_3, δ_3	Ω_4, δ_4

- Homogeneous diffusion tensor $\kappa = \delta I_d$, with $\delta_1 = \delta_3 = 5$ and $\delta_2 = \delta_4 = 1$.
- Exact solution in polar coordinates :

 $u_{|\Omega_i}(r,\theta) = r^{\alpha}(a_i \sin(\alpha \theta) + b_i \cos(\alpha \theta))$ in Ω_i ,

where $\alpha = 0.5354409456$ and

 $\begin{array}{ll} a_1 = 0.4472135955 & b_1 = 1 \\ a_2 = -0.7453559925 & b_2 = 2.33333333 \\ a_3 = -0.9441175905 & b_3 = 0.5555555555 \\ a_4 = -2.401702643 & b_4 = -0.4814814814 \end{array}$

Test 2: Pure diffusive problem (rough solution)

Figure: Representation of the mesh (left) and the analytical solution (right).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Test 2: Pure diffusive problem (rough solution)

Estimated convergence rates :

$$\| u - u_h \|_{L_2} \leq O(h^{2\alpha}) \quad \| u - u_h \|_{H^1} \leq O(h^{\alpha})$$

		lpha= 0.5354409456							
h		<i>u</i> − <i>L</i>	$I_h \parallel_{L_2}$	$\parallel u - \overline{u_h} \parallel_{H^1}$					
"		Error	Rate	Error	Rate				
4		1.1e-01	-	7.8e-01	-				
8		4.3e-02	1.303	4.8e-01	0.697				
16	5	1.8e-02	1.226	3.2e-01	0.588				
32	2	8.1e-03	1.200	2.2e-01	0.568				
64	ł	3.6e-03	1.150	1.5e-01	0.556				

Table: History of convergence for k = 1.

Figure: u_h with k = 1 and h = 1/64.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

Test 3: Pure advective problems (discontinuous solution)

Figure: Partition \mathcal{T}_h for h = 1/8

- Dirichlet BC imposed only inflow part of $\partial \Omega$,
- No diffusion $\kappa = 0$,
- Uniform Velocity field $\boldsymbol{\beta} = [\beta_1, \beta_2] \equiv [2, 1]$,
- \bullet Exact solution in Ω

$$u(x,y) = egin{cases} 1 & ext{if } y > 0.5(1+x), \ 0 & ext{else} \end{cases}$$

▲□▶▲御▶▲≣▶▲≣▶ ≣ めぬぐ

Test 3: Pure advective problem (discontinuous solution)

Figure: Representation of the numerical solution for the advective problem for k = 1 and h = 1/8.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - 釣A@

Test 4: Pure advective problem

- Dirichlet BC imposed only inflow part of $\partial \Omega$,
- No diffusion $\kappa = 0$,
- Uniform Velocity field $\beta = [\beta_1, \beta_2] \equiv [1, 1]$
- Exact solution in Ω :

$$u(x,y) = \exp[\cos(x-y)]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Test 4: Pure advective problem

Figure: Representation of the numerical solution for the advective rotating test case for k = 1 and h = 1/64.

Test 4: Purely convective rotative

						HDG					
h^{-1}	k	$\ u - u_h \ _{L_2}$		$\parallel u - u_h \parallel_{H^1}$		k	$\ u - u_h \ _{L_2}$		$\parallel u - u_h \parallel_{H^1}$		
	ň	Erreur	Ordre	Erreur	Ordre	^	Erreur	Ordre	Erreur	Ordre	
4		1.5e-02	-	3.2e-01	-		6.4e-04	-	3.3e-02	-	
8		5.8e-03	1.4	1.9e-01	0.7		2.9e-04	1.1	1.6e-02	1.1	
16	1	1.5e-03	2.0	9.7e-02	1.0	2	3.8e-05	2.9	3.8e-03	2.0	
32		3.8e-04	2.0	4.8e-02	1.0		4.9e-06	3.0	9.5e-04	2.0	
64		9.5e-05	2.0	2.4e-02	1.0		6.0e-07	3.0	2.4e-04	2.0	
4		3.5e-05	-	2.2e-03	-		2.5e-06	-	1.6e-04	-	
8		8.6e-06	2.0	6.8e-04	1.7		3.8e-07	2.7	3.4e-05	2.2	
16	3	5.9e-07	3.9	8.9e-05	2.9	4	1.3e-08	4.9	2.2e-06	4.0	
32		3.5e-08	4.1	1.1e-05	3.0		3.9e-10	5.0	1.4e-07	4.0	
64		2.2e-09	4.0	1.4e-06	3.0		1.2e-11	5.0	8.6e-09	4.0	

Table: History of convergence for the convection test case.

Test 5: Mixed Advection-Diffusion problem (high Péclet)

(Egger and Schöberl, 2009)

Figure: Square mesh for h = 1/64

- Diffusion tensor $\kappa = \delta I_d$ with $\delta = 1e 3$.
- Uniform Velocity field $\boldsymbol{\beta} = [\beta_1, \beta_2] \equiv [2, 1]$
- Exact solution in Ω

$$u(x,y) = \left(x - \frac{e^{\beta_1 x/\delta} - 1}{e^{\beta_1/\delta} - 1}\right) \cdot \left(y - \frac{e^{\beta_2 y/\delta} - 1}{e^{\beta_2/\delta} - 1}\right)$$

Test 5: Mixed Advection-Diffusion problem (high Péclet)

Figure: Numerical solution for k = 1 (left) vs Analytical solution (right) in 3d.

・ロト・西ト・西ト・西・ うらう

Test 5: Mixed Advection-Diffusion problem (high Péclet)

		HDG								
h^{-1}	k	$\ u - u_h \ _{L_2}$		$\parallel u - u_h \parallel_{H^1}$		k	$\ u - u_h \ _{L_2}$		$\parallel u - u_h \parallel_{H^1}$	
"	ĸ	Erreur	Ordre	Erreur	Ordre	ň	Erreur	Ordre	Erreur	Ordre
4		7.4e-02	-	1.2e+00	-		1.9e-02	-	5.9e-01	-
8		2.4e-02	1.6	9.0e-01	0.5		3.8e-03	2.4	2.5e-01	1.2
16	1	6.3e-03	1.9	5.2e-01	0.8	2	5.8e-04	2.7	7.8e-02	1.7
32		1.6e-03	2.0	2.7e-01	0.9		7.6e-05	2.9	2.1e-02	1.9
64		3.9e-04	2.0	1.4e-01	1.0		9.7e-06	3.0	5.3e-03	2.0
4		4.7e-03	-	2.1e-01	-		1.0e-03	-	6.2e-02	-
8		5.1e-04	3.2	5.0e-02	2.1		5.9e-05	4.1	7.7e-03	3.0
16	3	3.9e-05	3.7	8.0e-03	2.6	4	2.3e-06	4.7	6.7e-04	3.5
32		2.6e-06	3.9	1.1e-03	2.9		7.8e-08	4.9	2.4e-04	1.5
64		1.7e-07	4.0	2.7e-04	2.0		2.5e-09	5.0	2.3e-04	0.0
4		1.9e-04	-	1.5e-02	-		3.2e-05	-	3.0e-03	-
8		5.8e-06	5.1	9.8e-04	3.9		5.0e-07	6.0	2.5e-04	3.6
16	5	1.2e-07	5.6	2.4e-04	2.1	6	5.1e-09	6.6	2.3e-04	0.1
32		2.0e-09	5.9	2.3e-04	0.0		5.2e-11	6.6	2.3e-04	0.0

Table: History of convergence for the advection diffusion test case.

(Di Pietro, Droniou and Ern, 2009)

• Homogeneous diffusion tensor $\kappa = \delta I_d$,

$$\delta(\mathbf{r},\theta) = \begin{cases} \pi & \text{si } 0 \le \theta \ge \pi, \\ \mathbf{0} & \text{si } 0 \le \theta \le \pi, \end{cases}$$

- Uniform Velocity field $\beta = \frac{\overline{e_{\theta}}}{r}$
- Uniform reaction coefficient $\mu = 10^{-6}$.
- Exact solution in polar coordinates

$$u(r,\theta) = \begin{cases} (\theta - \pi)^2 & \text{si } 0 \le \theta \le \pi, \\ 3\pi(\theta - \pi) & \text{si } 0 \le \theta \le \pi, \end{cases}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

•

3

Figure: Numerical solution k = 0 (left) vs Analytical solution (right).

・ロト・西ト・西ト・西・・日・

Figure: 3D Representation / Numerical solution k = 0 (left) vs Analytical solution (right).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シタウ

Figure: History of convergence error in the L_2 -norm (left) and H^1 -norm (right).

Conclusion

Unified Hybridizable IP method for the class of degenerate ADR problem :

- ▶ High-Order DG approximation with $k \ge 0$
- Highly parallelizable (static condensation)
- Compact stencil (face localization of dofs)
- ▶ Optimal convergence rates for all regimes

To explore :

▶
$$u_h^* = \text{Post-processing of } (u_h, \hat{u}_h)$$

 $\| u - u_h^* \|_{L_2} \le O(h^{k+2})$ (superconvergence)

• $\sigma_h^* = \mathsf{H}(\operatorname{div})$ -conform reconstruction of $(\sigma_h, \hat{\sigma}_h)$:

$$\| \boldsymbol{\sigma} - \boldsymbol{\sigma}_h^* \|_{\mathrm{div}} \leq O(h^{k+1})$$