

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions in porous media

E. Ahusborde, B. Amaziane, M. Id Moulay*

CNRS / Univ Pau & Pays Adour/ E2S UPPA,Laboratoire de Mathématiques et de leurs Applications de Pau - Fédération IPRA, UMR5142 64000, Pau, France.

Workshop SITRAM,

Advances in the SImulation of reactive flow and TRAnsport in porous Media,

University of Pau & Adour Region, France, 2-3 December, 2019.

mohamed.id-moulay@univ-pau.fr

Outline

1 Motivation and Goals

- 2 Reactive transport model
- 3 Numerical scheme
- 4 Validation & numerical results
- 5 Conclusion & Perspectives

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 Motivation and Goals

- 2 Reactive transport model
- 3 Numerical scheme
- 4 Validation & numerical results
- 5 Conclusion & Perspectives

イロト イヨト イヨト イヨト

Geological storage of nuclear waste Figure: www.andra.fr

CO₂ sequestration

(Lacq-CO₂ - pilot general scheme) [1]

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The aim of reactive transport modelling in these applications is to make forecasts on large time-scales using numerical simulation on storage reliability.
- C. Prinet, S. Thibeau, M. Lescanne, J. Monne, Lacq-Rousse CO2 Capture and Storage Demonstration Pilot: Lessons Learnt From Two and a Half Years Monitoring, Energy Procedia, 37: 3610-3620,2013.

Geological storage of nuclear waste

CO₂ sequestration

(Lacq-CO2 - pilot general scheme) [1]

Necessity to take into account interactions between chemical species, the rock matrix and the flow

 C. Prinet, S. Thibeau, M. Lescanne, J. Monne, Lacq-Rousse CO2 Capture and Storage Demonstration Pilot: Lessons Learnt From Two and a Half Years Monitoring, Energy Procedia, 37: 3610-3620,2013.

Goals

- Development of a fully coupled, fully implicit, finite volume scheme for two-phase multicomponent flows with reactive transport in porous media.
- Implementation of a two-phase multicomponent reactive transport module 2pNc react in the DuMu^X framework
- Validation of the module on 3D test cases in literature including CO₂ sequestration
- Comparison of the fully coupled fully implicit and operator splitting approaches on particular test
 cases in a unified environnement.
- Improvement of the fully coupled module:
 - improving the nonlinear solver (Newton method)
 - including High performance computing

Very competitive parallel reactive transport simulator

Outline

Motivation and Goals

2 Reactive transport model

3 Numerical scheme

4 Validation & numerical results

5 Conclusion & Perspectives

イロン イロン イヨン イヨン

• Example of chemical system for CO₂ sequestration:

< 日 > < 同 > < 回 > < 回 > < 回 > <

Example of chemical system for CO₂ sequestration:

 $\begin{array}{l} \mathsf{OH}^{-} &\rightleftharpoons \mathsf{H2O}_{(1)} - \mathsf{H}^{+} \\ \mathsf{HCO}_{3}^{-} &\rightleftharpoons \mathsf{H2O}_{(1)} + \mathsf{CO2}_{(1)} - \mathsf{H}^{+} \\ \mathsf{CO2}_{(g)} &\rightleftharpoons \mathsf{CO2}_{(1)} \\ \mathsf{H2O}_{(g)} &\rightleftharpoons \mathsf{H2O}_{(j)} \\ \mathsf{CaCO}_{2} &\rightleftharpoons \mathsf{H2O}_{2} + \mathsf{Ca}^{2+} - \mathsf{H}^{+} \end{array}$

Some notations :

I = set of all the chemical components involved in the chemical reactions

> l_p = primary components > l_s = secondary components

- Main unknowns are the primary components
- Secondary species can be seen as product or intermediary variables

They are **eliminated** through their reaction rate by linear combination of the **mass conservation equations**, ex:

 $r_{H2O(I)} = -r_{H2O(g)} - r_{HCO3-} - r_{OH-}$

$$\frac{\partial}{\partial t}(\phi\rho_{\alpha}S_{\alpha}x_{\alpha}^{i}) + \nabla (\rho_{\alpha}x_{\alpha}^{i}\overrightarrow{q_{\alpha}} - \rho_{\alpha}\phi S_{\alpha}D_{\alpha}\nabla x_{\alpha}^{i}) = r^{i}, \quad i \in I \quad \alpha \in \{I, g\}$$
⁽²⁾

[1] M. W. Saaltink, C. Ayora, and J. Ramírez. A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resources Research, 34:1649–1656, 1998.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

• Example of chemical system for CO₂ sequestration:

 $\begin{array}{ll} \mathsf{OH}^{\cdot} & \rightleftharpoons \mathsf{H2O}_{()} \\ \mathsf{HCO}_{3}^{-} & \rightleftharpoons \mathsf{H2O}_{()} + \mathsf{CO2}_{()} \\ \mathsf{CO2}_{(g)} & \rightleftharpoons \mathsf{CO2}_{()} \\ \mathsf{H2O}_{(g)} & \rightleftharpoons \mathsf{H2O}_{()} \\ \mathsf{CaCO}_{3} & \rightleftharpoons \mathsf{HCO}_{3}^{-} + \mathsf{Ca}^{2^{+}} - \mathsf{H}^{+} \end{array}$

Some notations :

- I = set of all the chemical components involved in the chemical reactions
 - \succ I_p = primary components
 - *I_{nm}* = primary mobile components

 \succ I_s = secondary components

- I_{se} = components in equilibrium reactions
 - I = mobile species

I_{sk} = components in kinetic reactions

Equilbrium mass action law:

$$a^{j} = K_{j} \prod_{i \in I_{p}} \left(a^{i}\right)^{\nu_{ji}}, j \in I_{se}$$

$$\frac{dc_{s}^{i}}{dt} = -K_{i}^{s}A_{i}^{s}\left(1 - K_{i}\prod_{j \in I_{p}}\left(a_{j}^{i}\right)^{\nu_{ji}}\right), \quad i \in I_{sk}$$

Example of chemical system for CO₂ sequestration: ٠

OH⁻ ⇒ H2O₍₁₎ $HCO_3^- \rightleftharpoons H2O_0 + CO2_0$ $CO2_{(q)} \rightleftharpoons CO2_{(1)}$ $H2O_{(n)} \rightleftharpoons H2O_{(n)}$ $CaCO_{a} \rightleftharpoons HCO_{a}^{-} + Ca^{2+} - H^{+}$

≻ The I components presents in both phases sometimes play part in phase displacement and thermodynamic state of the phase

Some notations :

- I = set of all the chemical components involved in the chemical reactions
 - > I_p = primary components

 - Ipm = primary mobile components
 Ipi = primary immobile components

I = secondary components

- I_{se} = components in equilibrium reactions
 - I_{spe} = precipitated species
 I_{si} = sobred species
- I_c = components in kinetic reactions
- > l_{20} = components present in both phases (H₂O, CO₂)
- I = remaining components

Mathematical model

Two-phase compositional flow: *l*_{2p} components mass conservation

$$\frac{\partial}{\partial t} \left(\theta_{l} c_{l}^{j} + \theta_{g} c_{g}^{\tilde{j}} \right) + L_{l} (c_{l}^{j}) + L_{g} (c_{g}^{\tilde{j}}) + \sum_{j \in I_{g} \setminus b_{p_{0}}} \nu_{ji} \left[\frac{\partial}{\partial t} (\theta_{\alpha_{j}} c_{\alpha_{j}}^{j}) + L_{\alpha_{j}} (c_{\alpha_{j}}^{j}) \right] = 0, \qquad i \in I_{p} \cap I_{2p}, \quad (3)$$

$$a_{g}^{\overline{i}} = K^{i}a_{l}^{i}, \qquad \overline{i} \in I_{s} \cap I_{2p}.$$
 (4)

Reactive transport problem: $I_p \setminus I_{2p}$

$$\frac{\partial}{\partial t} \left(\theta_{\alpha} \mathbf{c}_{\alpha_{j}}^{i} + \sum_{j \in I_{S} \setminus I_{Sk}} \nu_{ji} \theta_{\alpha_{j}} \mathbf{c}_{\alpha_{j}}^{j} \right) + L_{\alpha_{i}} (\mathbf{c}_{\alpha_{i}}^{j}) + \sum_{j \in I_{S}} L_{\alpha_{j}} (\nu_{ji} \mathbf{c}_{\alpha_{j}}^{j}) = 0, \qquad i \in I_{pm} \cap I_{rt} \quad \alpha_{i} = \{l, g\}, \quad (5)$$

$$\frac{\partial}{\partial t} \left(\mathbf{c}_{S}^{i} + \sum_{j \in I_{Si} \cup I_{Spe}} \nu_{ji} \mathbf{c}_{S}^{j} \right) = 0, \qquad i \in I_{pi} \quad (6)$$

$$\mathbf{d}_{\alpha_{j}}^{i} = K^{j} \prod_{i \in I_{p}} (\mathbf{d}_{\alpha_{i}}^{i})^{\nu_{ji}}, \qquad j \in (I_{rt} \cap I_{S}) \setminus I_{Sk}, \quad \alpha_{i} = \{l, g\}, \quad (7)$$

$$\frac{\mathbf{d}\mathbf{c}_{S}^{i}}{\mathbf{dt}} = -K_{i}^{S} A_{i}^{S} \left(1 - K_{i} \prod_{j \in I_{p}} (\mathbf{d}_{i}^{j})^{\nu_{ji}} \right), \qquad i \in I_{rt} \cap I_{Sk}. \quad (8)$$

where: $L_{\alpha}(c_{\alpha}^{i}) = \nabla \cdot (c_{\alpha}^{i} \overrightarrow{q_{\alpha}} - \phi S_{\alpha} D_{\alpha}^{i} \nabla c_{\alpha}^{i}), \quad \theta_{\alpha} = \phi S_{\alpha} \ \alpha = \{I, \ g\} \quad \theta_{s} = 1.$

Solving approaches:

- Operator splitting methods: Splitting into two sub-problems.
- · Fully implicit methods: Coupling the two sub-problems.

Outline

Motivation and Goals

- 2 Reactive transport model
- 3 Numerical scheme
- 4 Validation & numerical results
- 5 Conclusion & Perspectives

イロン イロン イヨン イヨン

- Fully coupled, fully implicit scheme based on Direct Substitutional Approach
- Implicit Euler scheme for time discretization
- Vertex or Cell-centered finite volume approach for spatial discretization

Fully upwinding scheme for convective terms

$$\{\cdot\}_{kl}^{n+1} = \begin{cases} \{\cdot\}_k^{n+1} \text{ if } \vec{q}_{\alpha} \cdot \vec{n}_{kl} > 0\\ \{\cdot\}_1^{n+1} \text{ else.} \end{cases}$$
(9)

 ∇P_α, ∇cⁱ_α are calculated on the interface between the cells using P₁/Q₁ conforming Finite Element scheme with piecewise linear elements for the diffusive terms.

Newton-Raphson method to solve the nonlinear system

Numerical scheme

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Motivation and Goals

- 2 Reactive transport model
- 3 Numerical scheme
- 4 Validation & numerical results
- 5 Conclusion & Perspectives

イロン イロン イヨン イヨン

- Test case presented in [1].
 - Y. Fan, L. J. Durlofsky, and H. A. Tchelepi. A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO₂ storage simulations. Advances in Water Resources, 42:47–61, 2012.
- 3D domain, 100*m* of thickness, 15*km* of length and 15*km* of width.
- Injection well at 25m of the top of the aquifer.
- Injection during 20 years (18.6 × 10⁹ metric tons).
- Time of simulation = 2000 years.

Porosity	$\phi = 0.18$	Absolute permeability	$K = 10^{-13} m^2$
Capillary pressure	$P_c = 0$	Relative permeability	$k_{rl} = (S_l^*)^4$
law			$k_{rl} = (S_l^*)^4$
			$S_l^* = \frac{S_l - S_{lr}}{1 - S_{lr}}$
			$S_{lr} = 0.2$
Temperature	T = 323 K		
Liquid diffusion	$D_m = 1.10^{-9} m^2 . s^{-1}$	Gas diffusion	Model based on [1]
Liquid density	Model based on [2]	Liquid viscosity	Model based on [2]
Gas density	Model based on [1]	Gas viscosity	Model based on [2]

- B. Xu, K. Nagashima, J. M. DeSimone, and C. S. Johnson. Diffusion of water in liquid and supercritical carbon dioxide: an NMR study. The Journal of Physical Chemistry A, 107, 2003.
- J. J. Adams, S. Bachu, Equations of state for basin geofluids: algorithm review and intercomparison for brines, Geofluids 2, 257–271, 2002.
- [3] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, Journal of Physical and Chemical Reference Data 25, 1509–1596, 1996.
- [4] A. Fenghour, W. A. Wakeham, V. Vesovic, The Viscosity of Carbon Dioxide, Journal of Physical and Chemical Reference Data 27, 31–44, 1998.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Chemical system composed of 12 elements (3 minerals) and 6 reactions (3 kinetic reactions and 3 equilibrium).

No.	Reactions	$\log_{10}(K_k^{eq})$
(1)	$CO_{2(1)} + H_2O = H^+ + HCO_3^-$	-13.2631
(2)	$CO_3^{2^-} + H^+ = HCO_3^-$	-6.3221
(3)	$OH^- + H^+ = H_2O$	-10.2342
(4)	Anorthite + $8H^+ = 4H_2O + Ca^{2+} + 2AI^{3+} + 2SiO_{2(1)}$	25.82
(5)	Calcite + H^+ =Ca ²⁺ + HCO_3^-	1.6
(6)	Kaolinite + $6H^+=5H_2O + 2AI^{3+} + 2SiO_{2(I)}$	6.82

Table: Chemical reactions, (Equilibrium in blue) (Kinetic in red).

Mineral	$log_{10}(K_s)$	Surf. Area	Init. conc
	[mol.m ⁻² .s ⁻¹]	[m ² .m ⁻³]	[mol.m ⁻³]
Anorthite	-12.0	88	87
Calcite	-8.80	88	238
Kaolinite	-13.0	17600	88

Table: Mineral, precipitation and dissolution parameters.

Numerical convergence of some quantities of interest for test case I with their respective slopes at 100 years using the I2 relative error norm over all the domain.

 u_{ref} : reference solution, u_C coarse grid solution, NOE fine grid number of elements.

 $\begin{array}{c} 10\ 000\ cells: 25 \times 25 \times 16, h= 848.55\ m,\\ 80\ 000\ cells: 50 \times 50 \times 32, h= 424.27\ m,\\ 180\ 000\ cells: 75 \times 75 \times 32, h= 282.85\ m,\\ 640\ 000\ cells: 100 \times 100 \times 64, h= 212.13\ m,\\ 5\ 120\ 000\ cells: 200 \times 200 \times 128, h= 212.13\ m,\\ reference\ solution \end{array}$

Evolution of the some quantities of interest from 20 to 2000 years on a 320 000 cells.

Evolution of the some quantities of interest from 20 to 2000 years on a 320 000 cells.

イロン イボン イヨン 一日

The total quantity of CO₂ :

Evolution of CO₂ (left) and mineral (right) total quantities over the domain over 2000 years

Table: Final carbon distribution at 2000 years.

In CO _{2(g)}	In CO _{2(I)}	In ions	In minerals
84.02 %	12.33 %	0.2%	5%

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CPU time and weak parallel efficiency as a function of the number of processors.

2

イロン イロン イヨン イヨン

Comparison of results at the segment [(0, 0, 0) (2250, 2250, 100)] of the fully implicit scheme and operator splitting method using DSA for reactive transport problem [1] on differents mesh at 100 years.

 E. Ahusborde, B. Amaziane, M. El Ossmani, Improvement of numerical approximation of coupled two-phase multicomponent flow with reactive geochemical transport in porous media, Oil and Gas Science and Technology, 2018.

E. Ahusborde, B. Amaziane, M. Id Moulay*

イロト イ団ト イヨト イヨト

Evolution from 0 to 20 years

Evolution from 20 to 2000 years

Comparison of CO₂ total quantity evolution, over the domain of the fully implicit scheme and operator splitting method using DSA for reactive transport problem [1]

 E. Ahusborde, B. Amaziane, M. El Ossmani, Improvement of numerical approximation of coupled two-phase multicomponent flow with reactive geochemical transport in porous media, Oil and Gas Science and Technology, 2018.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CPU time (s) for the the fully implicit method (FIM) and operator splitting method (OPM).

Grid number of cells	Approach	CPU time	Iteration number
320.000	FIM	6h 28min	892
320 000	OPM	3h 34min	856
180.000	FIM	4h 15min	888
180 000	OPM	3h 7min	856
90.000	FIM	4h 6min	823
80 000	OPM	3h 22min	856
10.000	FIM	37min 30s	246
10 000	OPM	41 min	326

- We have already reduced the CPU time up to 2x, 3x compared to the simulations made by the default strategies (timestep, reassembling)
- The DSA approach performed better compared to SIA approach on single phase flow on particular test case (SHPCO2) test case
- However the operator splitting approach using the DSA approach for the reactive transport subproblem still performs better (sequential coupling of two implicit subproblems)
- More optimisations over the non-linear solver can be made and improvement the preconditioning and linear solvers.

- Test case presented in [1].
 - F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

Table: Input parameters for the test case II

Porosity	$\phi = 0.2$	Absolute permeability	$K = 10^{-12} m^2$
Capillary pressure	$P_c = 0$	Relative permeability	Brooks–Corey
			$S_{l}(res) = 0.0$ [-]
			$S_q(res) = 0.0$ [-]
			$\lambda = 2.0$ [-]
			<i>P_{entry}</i> = 1000.0 Pa
Temperature	<i>T</i> = 313.15 K		
Liquid diffusion	$D_m = 2.\ 10^{-9} m^2 . s^{-1}$	Gas diffusion	Model based on [1]
Liquid longitudinal dispersion	$\alpha_L = 0.1 m^2 . s^{-1}$	Liquid transversal dispersion	$\alpha_T = 0.01 m^2 . s^{-1}$
CO ₂ injection rate	2.10 ⁻² Kg.m ⁻² .s ⁻¹		
Liquid density (T=3.13.15K)	992 <i>Kg</i> .m ^{—3}	Gas density	Model based on [1]
Liquid viscosity (T=3.13.15K)	$\nu_l = 6.526 Pa.s$	Gas viscosity	Model based on [2]

	Molar mass <i>Kg.mol</i> ⁻¹	Initial concentration $mol.m^{-3}$
CO _{2(I)}	4.4×10^{-2}	1×10^{-2}
H ₂ O	1.8×10^{-2}	55333.33
HCO ₃	6.1×10^{-2}	1×10^{-2}
H⁺ Ŭ	1×10^{-3}	1×10^{-3}
Ca ²⁺	4×10^{-3}	1×10^{-1}
Me ³⁺	$1.5 imes 10^{-2}$	1×10^{-4}
SiO _{2(I)}	6×10^{-2}	1×10^{-2}
Calcite	-	0.1
MinA	-	0.2
MinB	-	0.0

 R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, Journal of Physical and Chemical Reference Data 25, 1509–1596, 1996.

[2] A. Fenghour, W. A. Wakeham, V. Vesovic, The Viscosity of Carbon Dioxide, Journal of Physical and Chemical Reference Data 27, 31–44, 1998.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Results comparison of some quantities of interest at 85 days : our results (9600 cells) (left) and the results in [1] (right).

[1] F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Results comparison of some quantities of interest at 85 days : our results (9600 cells) (left) and the results in [1] (right).

[1] F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Results comparison of some quantities of interest at 85 days : our results (9600 cells) (left) and the results in [1] (right).

[1] F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Results comparison of some quantities of interest at 85 days : our results (9600 cells) (left) and the results in [1] (right).

[1] F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Results comparison of MinB evolution from 20 days to 85 days : our results (9600 cells) (left) and the results in [1] (right).

[1] F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

MinB evolution from 20 days to 85 days on 9600 cells.

[1] F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Our results on coarse mesh

Brunner & al. code (by Markus knodel)

Results comparison on coarse grid (600 cells) of MinB at 85 days with a 2D version.

F. Brunner, P. Knabner. A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Computational Geosciences, 23:127–148, 2019.

3D numerical simulation of coupled processes between two-phase flows and geochemical reactions

Outline

Motivation and Goals

- 2 Reactive transport model
- 3 Numerical scheme
- 4 Validation & numerical results
- 5 Conclusion & Perspectives

イロト イヨト イヨト イヨト

- Development of a fully coupled, fully implicit finite volume scheme for a two-phase multicomponent flow with reactive transport in porous media.
- Validation of our methodology and our implemented module 2pNc-react on test cases for CO₂ injection in saline aquifers.
- Comparison of the the fully implicit method and the operator splitting approach on particular test cases.

- Validation of the 2pNc-react module on 2D and 3D realistic test cases including CO₂ geological sequestration.
- Advanced comparison between the fully implicit method and the operator splitting approach.
- Reducing of the CPU time for the fully implicit method to make it more competitive the sequential
 approach by improving the non linear solver and the linear solver.

Thank you for your attention

Questions ?

This work was partially supported by the **Carnot Institute ISIFoR** project (Institute for the sustainable engineering of fossil resources).

We also thank the \mathbf{DuMu}^{X} and \mathbf{DUNE} teams for their help during the development of our reactive transport module.

We also thank **CINES** (National Computing Center for Higher Education) to give us access to their computing resources facility. This work was granted access to the HPC resources of CINES under the allocations 2017-A0020610019 and 2018-A0040610019 made by GENCI.