

Evolution of planar fractures: an experimental and reactive transport modelling study

<u>Catherine Noiriel¹</u> and Hang Deng²

¹ Géosciences Environnement Toulouse, Université Paul Sabatier ² Lawrence Berkeley Lab, Energy Geosciences Division

catherine.noiriel@get.omp.eu

SITRAM workshop, Pau, December 2-3, 2019

Challenging reactive transport modelling

Dissolution/precipitation reactions → Evolving porous medium / fracture geometry → Changes in flow and transport properties

Noiriel C. and Daval D. [2017] Accounts of Chemical Research, vol 50, n°4, p. 759–768

Experimental/numerical approach

X-ray micro-tomography applications to RT

Dissolution of porous rocks

Noiriel et al. [2014] GRL Noiriel et al. [2015] Oil & Gas Sc. Tech.

Noiriel et al. [2013] J. Hydrology

Reactive flow into fractures

Precipitation in porous media

Noiriel et al. [2012] Chem. Geology Noiriel et al. [2016] Adv. Water Res.

Mineral/structural heterogeneity and instability

• Experiment \rightarrow injection at pH = 3.8 at different flow rates in a pure limestone

Transition from conical to ramidified to dominant wormhole

Noiriel and Deng [2018] Chemical Geology, vol. 497, 100-114

~6 mm

Evolution of fracture morphology

 Heterogeneity development inherent to the presence of clay spots and clays layers (~1% of the limestone matrix content)

Evolution of fluid chemistry and permeability

• Wormhole breakthrough results in a drop of pH, $[Ca^{2+}]_{out}$, $F_{Ca(out)}$ and increase in permeability

UNIVERSITÉ TOULOUSE III

Reactive transport modelling

- 2.5D code derived from Crunchflow and adapted to meshing of the fracture plane
- Grid cell porosity and permeability derived from local aperture

$$\phi_{y,z} = \frac{a_{y,z}}{d_x}$$
 $k_{y,z} = \frac{a_{y,z}^3}{12 d_x}$

Fluid velocity solved from Darcy's law

$$\phi \mathbf{v} = \frac{k \nabla P}{\mu}$$

• ARDE for reactive transport

$$\frac{\partial (\phi \Psi_i)}{\partial t} = \nabla \cdot (\phi \mathbf{D} \nabla \Psi_i - \mathbf{v} \Psi_i) - \sum_m v_{i,m} R_m$$

Thermo-kinetics formulation for calcite dissolution

Initial fracture geometry and boundary conditions

• Random aperture fields (lognormal distribution) $a_0 = 20 \pm 5 \mu m$

Reactive transport modelling

- Comparison between model and experiments
- Test on 3 parameters:
 - Influence on the reaction rate (kinetic constant k_1 and surface roughness factor SFR)
 - Role of the local heterogeneities (clay spots)
 - Local transport limitations (poor *vs* well-mixed conditions across the fracture walls)

Effect of calcite reactivity

• Kinetic formulation (values of k_1 , k_2 and k_3) differs from authors

$$R_m = -\frac{dC_{min}}{dt} = A_m k_{cal} (1 - \Omega)$$

- $\log k_1 = -0.05$ (Chou et al., 1989)
- $\log k_1 = -0.3$ (Plummer et al., 1978)
- $\log k_1 = -1.08$ (Deng et al., 2015)

$$k_{cal} = k_1 a_{H+} + k_2 a_{CO2} + k_3$$

Surface area is an unknown parameter

$$R_m = -\frac{dC_{min}}{dt} = A_m k_{cal} (1 - \Omega)$$

$$A_m = A_{geo} \cdot SRF = 2 \cdot d_y \cdot d_z \cdot SRF$$

- Surface roughness factor SFR = 1
- Surface roughness factor SFR = 4
- Surface roughness factor SFR = 10

Effect of kinetic constant k₁ (pH-dependence)

• Influence on the spatial dissolution distribution and reactive infiltration instability $\log k_1 = -0.3$ (Plummer et al., 1978)

Effect of surface roughness factor

Influence on the spatial dissolution distribution and reactive infiltration instability
SFR = 4

Effect of reaction rate (k₁ and SFR)

Small effects on chemical flux but large effect on permeability evolution

Effect of mineral heterogeneity

 Mask with different heterogeneity level (from non-reactive isolated clay spots to clay layers) mapped on the aperture field (calcite volume fraction reduced to 60%)

Effect of mineral heterogeneity

Effect of mineral heterogeneity

 Very slight effects on chemical flux and moderate to large effects on permeability evolution

Effect of local transport limitations

In the initial fractures

Well-mixed conditions DBL thickness controlled by advection

Diffusion limitation in a boundary

After wormhole formation

Complete mixing accross the walls

with
$$R_{surf} = R_m$$
 and $R_{diff} = \frac{D_0 Sh}{2a} ([j] - [j]_s)$

Effect of local transport limitations

• Favors the fluid localisation and thus the decrease of chemical flux

SFR = 4, $\log k_1$ = -0.05 (Chou et al., 1978) and clay mask Mc-1 in all simulations

Effect of local transport limitations

• Favors the fluid localisation and thus the decrease of chemical flux

- \rightarrow Unfortunately fitting with experimental results remains tricky
- \rightarrow Pore-scale modelling?

Conclusions/perspectives

- Ability of Darcy's scale model to develop reactive flow instabilities
- But wormhole patterns (ramified and dominant) not well reproduced
- Fully coupled model integrating detailed description of flow (Stokes) and reactivity, as well as flow reorganization with moving interface is required. Any idea...?

 <u>Reference</u>: C. Noiriel and H. Deng [2018] Evolution of planar fractures in limestone: the role of flow rate, mineral heterogeneity and local transport processes, Chemical Geology, 497, pp. 100-114, <u>https://doi.org/10.1016/j.chemgeo.2018.08.026</u>

Experimental conditionss

Injection of HCl into planar fractures at three different flow rates

ð

 $a_{\theta} = 20 \ \mu m$

Sample	Experiment duration (hr)	Flow rate Q (cm ³ .h ⁻ ¹)	Length L (mm)	Width l (mm)	a ₀ (µm)	Pe ₀	\overline{v}_0 (m.s ⁻¹)
FRAC1	164.5 h	1.2	15.1	6.4	20^*	7	2.6 10-3
FRAC2	55 h	102	15.2	6.0	20^*	598	2.4 10-1
FRAC3	26.5 h	300	14.9	6.4	20^{*}	1648	6.5 10-1

Flow velocity field

Calculated from the local cubic law

UNIVERSITÉ TOULOUSE III