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Motivation::Modeling Context

MultiPhase Chemical System

Gas = {H2O(g), CO2 , CH4}
Water = {H2O, H+, OH-, HCO3-, CO2(aq), Ca++, CO3– , Na+, Cl-, SiO2(aq)}
Calcite = {CaCO3(s)}
Quartz = {SiO2(s)}
Halite = {NaCl(s)}

Kinetic Reactions

Rkin1: CO2 ↔ CO2(aq) [τ1]
Rkin2: H2O(g) ↔ H2O [τ2]
Rkin3: SiO2(aq) ↔ SiO2(s) [τ3]
Rkin4: Na+ + Cl- ↔ NaCl(s) [τ4]

#Phases = 5, #Species = 16, #Reactions = 4
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Motivation::Standard Kinetics Model

Unknowns

n(t) = {ni (t)}i∈Species , t ∈ [0,T ]

Equations

dni/dt =
∑

j∈Reactions Si,jτj
ni (t = 0) = n0i

Constraints

ni(t) ≥ 0

Kinetic Law (Law Of Mass Action)

τj = −kj Srj
(∏

i,Si,j>0(ai/Ki )
|Si,j | −

∏
i,Si,j<0(ai/Ki )

|Si,j |
)

Activity Model (Ideal Mixing Model)

ai = xi
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Motivation::Reactive Surface Models 1/2
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Motivation::Reactive Surface Models 2/2



Outline

1. Motivation

2. Limited Kinetics Model

3. Limited Model Study

4. Conclusion and Perspectives



9 / 24 — c© 2019 IFPEN

Limited Kinetics Model::One Mineral With One Reaction Models

Chemical System:

Water = {H2O, A}
Mineral = {M}

Kinetic Reactions:

Rkin: A ↔ M [τ ]

(H) Mineral dissolution domain: xA < KA/KM =⇒ τ < 0
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Limited Kinetics Model::Generalized Limited Kinetics Model

Unknowns:

n(t) = {ni (t)}i∈Species , t ∈ [0,T ]

Equations:

dni/dt =
∑

j∈Reactions Si,j rj , with rj = θjτj
ni (t = 0) = n0i

State Variables constraints:

ni(t) ≥ 0

Control Variables constraints:

θj ∈ [0, 1]
θj = 1 if min{i,Si,j<0}(ni ) > 0
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Limited Kinetics Model::Example

Chemical System:

Min1 = {M1}
Min2 = {M2}
Min3 = {M3}

Kinetic Reactions:

Rkin1: M1↔ M2 [τ1]
Rkin2: M2↔ M3 [τ2]

Equations:
dnM1/dt = −θ1τ1
dnM2/dt = θ1τ1 − θ2τ2
dnM3/dt = θ2τ2
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Limited Model Study[1]::Regularization Approach, Definition

Regularized Model Equations:

dni,ε/dt =
∑

j∈Reactions rj,ε, with rj,ε = θj,epsτj
ni,eps(t = 0) = n0i

Where:

θj,eps = f Blend(f Upwindj (hε))

hi,ε = ζ(ni/ε): Regularized step limiter

f Upwindj : Filtering of upwind species

f Blend : Blending operator (fMin, fProd ,...)

Regularized step functions:
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Limited Model Study[1]::Regularization Approach, Example

Equations:


dnM1/dt = −θ1,epsτ1
dnM2/dt = θ1,epsτ1 − θ2,epsτ2
dnM3/dt = θ2,epsτ2
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Limited Model Study[1]::Regularization Approach, Application

Equations:


dnM1/dt = −θ1,epsτ1
dnM2/dt = θ1,epsτ1 − θ2,epsτ2
dnM3/dt = θ2,epsτ2

(H) Standard rates: τ1 = 1, τ2 = 4 =⇒ τ1/τ2 = 0.25
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Limited Model Study[2]::Differential Inclusion Approach, Definition

Let B be a sign combinatorics matrix associated to the set of Species.
Let Dk = {n ∈ RSpecies , sign(ni ) = Bk

i }

Piecewise Discontinuous Flow Field :

fk(n) =
∑

i∈Species Si,j rj,k if n ∈ Dk , where rj,k = θk,jτj

With:

θj,k = f Prod(f Upwindj (H(n))) =

{
1 if Bk

i = +1,∀i such that Si,j < 0
0 else

Filippov Differential Inclusion Equations:

dni/dt = f RHS ∈ F (n) = Convex(fk(n)) =
∑

ks.t.n∈V (Dk )
λk fk(n)

ni (t = 0) = n0i
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Limited Model Study[2]::Differential Inclusion Approach, Example

Equations:


dnM1/dt = −θ1,kτ1
dnM2/dt = θ1,kτ1 − θ2,kτ2
dnM3/dt = θ2,kτ2
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Limited Model Study[2]::Differential Inclusion Approach, Results
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Limited Model Study[2]::Differential Inclusion Approach, Results
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Limited Model Study[3]::Projected Dynamics Approach

Projected Dynamics Model Equations:

dni/dt = f Proji (n)
ni (t = 0) = n0i

Where:

f Proj(n) is ”a projected right hand side” solution of

P(n) :


min ‖f − Sτ(n)‖2
f ∈ Tc[(R+

∗ )Species ](n)
fi = µi ∗ Sτ(n) with µi ∈ [0, 1]
f ∈ Im(S)
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Conclusion and Perspectives

Results

A New Generalized Limited Kinetics Model
Mathematical study by 3 different Approaches

Mathematical Issues

Additional criteria required to qualify ”good solutions” in case of non uniqueness
Classification of co-dimension 2 discontinuities to be completed

Numerical Issues

Stiffness of the Regularized Model may avoid large time steps
Projected Dynamics algorithm is not fully implicit

Perspectives

Simulation of Multiphase Reactive Transport with Kinetics and Equilibrium
Extension to Mixture Phases and Kinetics
Study of ”Complementarity Type” Global Implicit Formulations
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